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A set of conservation laws can be obtained either by substitut-

ing (22) into

2Re(~~uZ~~’) +~~(u,~+~TU, )~7=0, z=O,l ,2,3(23)

and

21m(~~ui~~’)– j~$(ul~ – ~Tul)~T = O, i= 0,1,2,3

(24)

where the prime indicates differentiation with respect to x, or by

applying the Kronecker product method described in Section III.

Since the transverse field vectors in a homogeneous anisotropic

dielectric are connected through the wave impedance matrix,

~,= TJOZ~, and, consequently, ii can be expressed by ~, alone

where

P=

[1z~ii=qol’ ~. ,

1000
0010
0100

10001

(25)

is a permutation matrix, the Kronecker product procedure yields

for the first set of conservation laws

~[~~QH,]+j[~$V~T]=O
ax ‘

(26)

where the 2 X 2 matrices Q and V are

and

V=[:]’P[(OZ XO,)R-R’(O, XO,)]P[:]

respectively.

When – jkX is substituted for i7/ t?x in (23), four expressions

are obtained, each of which depends on k;, Re k:, the frequency

parameter k;, and the TE–TM field ratio r = E=/EY of an

elementary wave. These expressions are

[ 1k! l+~Rer’+~lr\2 +Rek~[l+lr\2]
xx xx

=k~[cyy +26y.Jler+c..lr12]

[ 1
k; l–>Rer–>\r12 +Rekj[l –lr12]= k~[cyy–c,=lr12]

xx xx

= ki[cy, (l+lr12)+(cyy+ c,,)Rer]

[k~(l+~]+2Rekl-(cyy +c,z)ki]Imr=0. (27)

On the other hand, (26) supplies 16 equations of the type encoun-

tered in Example 1, where the spatial rate of change of a power

flow density (power per unit area) is compared to the decay rate

of the energy density (energy per unit volume). From this large

number of conservation laws one must carefully select those

which are most useful.

Note that (26) as well as (27) are expressed in terms of field

amplitudes. These are therefore potentially suitable to be used in

a stationary formula to determine k= or the impedance parame-

ters for a given frequency [1]. In addition, each of (27) describes

an ellipse in terms of the TE–TM field ratio r, whose principal

axes are kx/ko = c/vpx and k,/ko = c/vpz. Since the r is di-

rectly related to the angle enclosed between the z direction and

the optic axis, this so-called slowness ellipse [4, sec. 7D] provides

a useful relationship between crystal orientation and the inclina-

tion of angled waves in the guide.

V. CONCLUSIONS

A simple method has been introduced to generate conservation

laws applicable to linear transmission systems characterized by

their coupling matrix. These conservation laws are useful for

obtaining stationary formulas for the propagation constant of a

waveguide, for the modal resonance frequency of a cavity resona-

tor, for the impedance parameters characterizing a TE–TM mode

coupler, or for determining the dependence of angled waves on

crystal orientation in an anisotropic slab waveguide, etc. Exam-

ples related to acoustic surface wave devices and anisotropic

dielectric waveguides illustrate the method.
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Equivalent Circuit of a Gap in the Central Conductor

of a Coaxial Line

SUSANTA SEN AND P. K. SAHA

Abstract —The equivalent circuit of a gap in the central conductor of a

TEM coaxial line has been determined by the variational technique.

Theoretically computed circuit parameters show excellent agreement with

the experimental data available in the literature. The gap equivalent circuit

Manuscript recewed February 17, 1982; revised April 28, 1982.

The authors are with the University College of Technology, Institute of

Radiophysics and Electromcs, 92, Acharya Prafulla Chandra Road, Calcutta,

700009, India.

001 8-9480/82/1 100-2026$00.75 @1982 IEEE



IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUESVOL. 30, NO, 1 I , NOVEMRER1982 2027

has also been used to predict, within 2 percent, the experimeutafly mea-

sured tuning characteristic of a long cylindrical reentrant cavity resonator.

I. INTRODUCTION

The gaps in the central conductors of coaxial lines have several

applications in microwave circuits. As such, the knowledge of

their equivalent circuits is essential for design purposes. The only

data available are those of Green [1] who solved the static

problem by the finite difference technique. Two approximate

formulas are, however, available for representation of the gap by

an equivalent series capacitance [2], [3]. Both are useful as long as

the gap width is small compared to the difference in the diame-

ters of the coaxial conductors. Besides these the only other

reference available appears to be that of Dawirs [4] which con-

tains some results of the experimental determination ,of the

equivalent Pi-network.

The present authors felt the need for the equivalent circuit of a

gap without restrictions on dimensions and wavelengths while

investigating a TEM-mode coaxial reeatrant cavity suitable for

microwave measurement of dielectric p“~ameters [5]. For this

purpose, the standard variational analysis, suitable for symmetric

double discontinuity [6], was carried out for the gap in the central

conductor of a coaxial line. The analysis yields both the upper

and the lower bounds of the short-circuit and open-circuit input

impedance and admittances from which the equivalent circuit can

be determined. Computations were carried out for the discontinu-

ity parameters in [4] and the theoretical values were compared

with the experimental values. Further experimental verifications

were provided by comparing the measured tuning characteristics

of a reentrant cavity with those obtained from the theoretically

calculated gap capacitances.

II. Tm DISCONTINUITY PROBLEM AND ITS VARIATIONAL

FORMULATION

The discontinuity configuration is shown in Fig. 1(a) and is

characterized by the parameters: gap ratio G = 1/a and radius

ratio R = b/a. The dimensions are usually such that only the

principal TEM mode propagates in the coaxiaf section. In the gap

section, the cylindrical TMO1 mode may or may not propagate

depending on b/A, while all TMO~l ( m > 1) modes are evanes-

cent. If z = + 1 are chosen as the terminal reference planes, the

equivalent circuit is a T- or Pi-network (Fig. l(b) and (c)). To

determine the equivalent circuit elements it is sufficient to solve

two half problems involving a single discontinuity which result

from bisecting the gap by a magnetic plane (op~ncircuit) and an

electric plane (shortcircuit) at the plane of symmetry (z = O).

With TEM wave incident from the left and the transverse fields

in regions I (z < – 1) and II ( – 1< z < O) expanded in terms of

the TMO. orthogonal mode functions @. and ‘F. of the coaxial

and cylindrical guides, respectively, it is straightforward to derive

[7], [8] the following stationary expressions for the normalized

input impedance and admittance:

()

_, ~, JJ ~A(r)g(r/r’)~~(r’)d~d~’

z.. = ; . cross Secti”n
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Fig. 1. (a) The coaxial gap discontinuity. (b) Equivalent T-network. (c)

Equivalent Pi-network.

and

J’J ~(.)~(./.’)H)dsdssds’
(%)-’ = k:Yo. CrossSection

Sc

[J
1

2
(2a)

H(r)@o(r) dS
cross section

lc(r/r’) = ~
{

@m(r) @M(r’) + COth W~(r)V~(r’)

Ycmr: tanh~”J” ywmy;~=1 }

(2b)

where the upper and lower hyperbolic functions correspond to

the open- and short-circuit bisection, respectively; Y., r. —TEM

wave admittance and propagation constant; YCM,17~— the wave

admittance and the propagation constant of the coaxiaf TMO~

mode; Y.~, y~ — the wave admittance and the propagation con-

stant of the cylindrical TMOM mode; k. = 2 w/A.

Expressions (1) and (2) yield the upper and lower bounds,

respectively; on the discontinuity capacitance.

III. NUMERICAL COMPUTATION AND RESULTS

In the upper bound expression, the aperture electric field is

approximated by the incident field as

EA(r)=Co@o(r)+ f CnQn(r). (3)
~=1

If the mode functions @H( n > O) and the aperture field EA ( r) are

defined to be zero over [0, a], all the integrations in (la) are

effectively over the aperture area.

For the lower-bound solution, the anrdysis shows that the (2a)

is exact if H(r) is the magnetic field in the gap region. Therefore,

the following expansion is used:
.

H(r)= f Dq~q(r). (4)
~=1
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Fig, 2. Variation of the equivalent Pi-network elements with the gap width m
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In both the lower- and the upper-bound calculations the in-

finite summations were truncated after 100 terms, and up to 15

term expansions of the unknown fields were used which was

more than that necessary to obtain good convergence.

In Fig. 2 the computed element values of the low frequency

( kob = 0.01) equivalent Pi-network of the gap in a 50-0 air line

(2b = 0.562 in, 2a= 0.0244 in as in [4]) are plotted showing the

variations of the capacitances with the gap width. On these are

superposed the experimental values in [4] for which no error

spread was indicated, subject to the usual error in reproduction

from a curve and reduced appropriately to take into account the

teflon (c, = 2.1) bead support in the test structure. The calculated

variation of the shunt capacitance shows that it should tend to

zero as the gap becomes vanishingly small. The scattered experi-

mentif values, however, indicate hardly any particular depen-

dence on the gap spacing. The calculated low frequency values of

the series capacitance are in good agreement with the experimen-

tal values though they tend to underestimate the latter. As shown

below, this discrepancy is due to the frequency dependence of the

equivalent circuit parameters.

In Fig. 3 the variation of the Pi-network parameters is shown

for l/a = 0.25 and 0.025 in a 50-$2 line over a wide range of

normalized frequency k. b up to the cutoff of the cylindrical

TMO1 mode. While the shunt capacitance increases very slowly,

almost negligibly, with frequency, the series capacitance increases

much more rapidly and shows a sharp increase near the cutoff.

Also shown are the equivalent series capacitances of the gaps

obtained from Young’s formula. Marcuvitz’s formula for short-

circuit capacitance actually yields identical results. It is im-
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Fig. 3. Frequency dependence of the equivalent Pi-network parameters of

gaps in a 50-(2 line. The capacitances are in pF/cm of the outer conductor
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mediately apparent that these formulas are useful for very small

values of kOb. At a given value of k. b, whether Young’s formula

would be applicable or not can be determined from the pereent

deviation of the dc value from the true frequency dependent

value of the capacitance C,P + C2P/2. For example, at lcOb = 0.8,

the deviation is 5.6 pereent and 8.6 percent for I/a= 0.25 and

0.025, respectively.

Fig. 4 shows the experimental tuning characteristics of a long

reentrant cavity [5]. The resonant frequency for a particular gap

width was also calculated theoretically by treating the cavity as a

coaxial line shorted at one end and terminated at the other by i)

the short-circuit capacitance given by Marcuvitz’s formula and by

ii) the frequency dependent capacitance 2 Cl ~ + Cz ~ obtained by

the variational method. The theoretical curve obtained from the

latter is identical in shape to the experimental curve though there

is a quantitative disagreement, which is 2 percent at the worst.

The curve obtained from using Marcuvitz’s formula shows 2.5

percent deviation at the lowest end of the tuning range and the

discrepancy increases rapidly. Since, for the dimensions of the

experimental cavity, kO b = 1.32 at 7.0 GHz, this disagreement is

not unexpected considering the frequency dependent nature of

the terminating gap capacitance.

IV. CONCLUSIONS

A systematic theoretical study has been made on the equivalent

circuit of a gap in the central conductor of a TEM coaxial line,

using the standard variational technique. The computed parame-

ter values show good agreement with the experimental data

available in the literature. Further, experimental verification is

provided by computing the resonant frequencies of a reentrant

cavity for various gap widths from the short-circuit gap capaci-

tances and comparing those with the experimentally measured

values. As long as the normalized frequeney kO b <<2.405 and the

gap width is small, Young’s or Marcuvitz’s formula can predict

the resonant frequency. But as the resonant frequency increases

with increasing gap width, it is the frequeney dependent behavior

of the short-eircnit terminating capacitance that plays the key

role in predicting the tuning characteristics correctly.
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Analysis of Triangular MIcrostrip Resonators

ARVIND K. SHARMA, MEMBER,IEEEAND BHARATHI BHAT,

SENfORMEMBER,IEEE

Abstract —An isosceles triangafar mierostrip resonator is anafyzed with

the full wave formulation of the speetraf domain technique. For a given

apex angle and triangle height, the resonant frequeney is evahrated from

the numericaf solution of the determinantaf characteristic equation, ob-

tained by neglecting the transverse current density. The agreement between

the theoretical and experimental results is typically within ~,2 percent.

I. INTRODUC’MON

The triangular microstrip resonator is a potential network

element for a wide variety of applications such as oscillators,

filters, and circulators [1]. In a recent investigation, Helszajn and

James [2], and Nisbet and Helszajn [3] studied the equilateral

triangular microstnp resonator element for filter and circulator

applications. The 120° symmetry property of this element was

utilized in an articulate design of circulator [2], [4]. Cuhaei and

James [5] showed that, as a resonator, this element exhibits

slightly higher radiation Q-factor (Q,) than the corresponding

circular rnicrostrip disk resonator. This is a significant advantage

in the design of low-loss microwave integrated circuits.

The isosceles triangular microstrip resonator, as shown in Fig.

1, is considered to be a useful network element, especially for

oscillator and filter applications. It can provide greater flexibility

compared with the equilateral configuration in the design of

microwave integrated circuits.

In this paper, we present an analysis of the isosceles triangular

microstrip resonator with the full wave formulation of the spec-

tral domain technique. The experimental verification of the com-

puted resonant frequencies for various apex angles and triangle

heights is also included.

II. ANALYSIS

The isosceles triangle element in a shielding wavegnide con-

figuration is shown in Fig. 1. It has an apex angle 2 a and height

1. The dielectric thickness d above the ground plane has relative

dielectric constant c,. The shielding waveguide has dimension 2a

and d + h. The triangular region is the surface bounded by lines

given by the following equations:

{
Triangular Region, T: z = z

(la)

X+ztana=o. (lb)

The spectral domain analysis of this structure is essentially

similar to that of a rectangular micmstrip resonator [6] or any

other microstnp resonant structure [7]–[9]. Therefore, we shall

present here a description of the assumed current density only.

The current density distribution on an isosceles triangular

microstrip resonator is not explicitly known. However, as a first

approximation, we neglect the transverse current density and

assume the variation of the longitudinal current density Y, ( x, z )

as following:

Jz(x, z)= J,(x) .rz(z) (2)
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