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A set of conservation laws can be obtained either by substitut-
ing (22) into

2Re(Efo,E/)+ El(0,A+ A7) E, =0, i=0,1,2,3(23)
and
2Im(E}o,E!' )~ jE/(0,4— A"0,)E,=0, i=0,1,2,3
(24)

where the prime indicates differentiation with respect to x, or by
applying the Kronecker product method described in Section III
Since the transverse field vectors in a homogeneous anisotropic
dielectric are connected through the wave impedance matrix,

E, = n,ZH, and, consequently,  can be expressed by H, alone

_ Z |5
a='qOP[aO]H7 (25)
where
1 0 0 0
10 0 1 0
P=lo 1 0 o
0 0 0 1

is a permutation matrix, the Kronecker product procedure yields
for the first set of conservation laws

2 [HoH, ]+ j[AVT] =0

where the 2 X2 matrices Q and V are

o-[a]raxayr[d]

(26)

and

V= [irp[("r X g,) R = R(q, % “f)]P["ZO]

respectively.

When — jk, is substituted for d /dx in (23), four expressions
are obtained, each of which depends on k2, Re k2, the frequency
parameter k3, and the TE-TM field ratio r=E,/E, of an
elementary wave. These expressions are

k2
i €

xXx

€ Z ezz
1+€—y—Rer'+ |r|2}+Rek§[1+|r|2]

XX

= kg[eyy +2¢,Rer+ e:;|r|2]

€, e
k? [1 ~“Rer- S—‘|r|2 +Rek2[1-|r12] = k3[e,, — €.lr?]

XX XX

€
kf[—”— +(1 + :i)ker] +Rek2[2Rer]
XX XX

= k%[cyz(1+|r|2)+(eyy +¢.,)Re r]

[kzz(l-l-Si)+2Rek§—(eyy+e”)k§ Imr=0. (27)
On the other hand, (26) supplies 16 equations of the type encoun-
tered in Example 1, where the spatial rate of change of a power
flow density (power per unit area) is compared to the decay rate
of the energy density (energy per unit volume). From this large
number of conservation laws one must carefully select those
which are most useful.

Note that (26) as well as (27) are expressed in terms of field
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amplitudes. These are therefore potentially suitable to be used in
a stationary formula to determine k, or the impedance parame-
ters for a given frequency [1]. In addition, each of (27) describes
an ellipse in terms of the TE-TM field ratio r, whose principal

axes are k,/ky=c/v,, and k,/ko=c/v,,. Since the r is di-

rectly related to the angle enclosed between the z direction and
the optic axis, this so-called slowness ellipse [4, sec. 7D] provides
a useful relationship between crystal orientation and the inclina-
tion of angled waves in the guide.

V. CONCLUSIONS

A simple method has been introduced to generate conservation
laws applicable to linear transmission systems characterized by
their coupling matrix. These conservation laws are useful for
obtaining stationary formulas for the propagation constant of a
waveguide, for the modal resonance frequency of a cavity resona-
tor, for the impedance parameters characterizing a TE-TM mode
coupler, or for determining the dependence of angled waves on
crystal orientation in an anisotropic slab waveguide, etc. Exam-
ples related to acoustic surface wave devices and anisotropic
dielectric waveguides illustrate the method.
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Equivalent Circuit of a Gap in the Central Conductor
of a Coaxial Line

SUSANTA SEN anD P. K. SAHA

Abstract — The equivalent circuit of a gap in the central conductor of a
TEM coaxial line has been determined by the variational technigue.
Theoretically computed circuit parameters show excellent agreement with
the experimental data available in the literature. The gap equivalent circuit
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has also been used to predict, within 2 percent, the experimentally mea-
sured tuning characteristic of a long cylindrical reentrant cavity resonator.

I. INTRODUCTION

The gaps in the central conductors of coaxial lines have several
applications in microwave circuits. As such, the knowledge of
their equivalent circuits is essential for design purposes. The only
data available are those of Green [1] who solved the static
problem by the finite difference technique. Two approximate
formulas are, however, available for representation of the gap by
an equivalent series capacitance [2], [3]. Both are useful as long as
the gap width is small compared to the difference in the diame-
ters of the coaxial conductors. Besides these the only other
reference available appears to be that of Dawirs [4] which con-
tains some results of the experimental determination of the
equivalent Pi-network.

The present authors felt the need for the equivalent circuit of a
gap without restrictions on dimensions and wavelengths while
investigating a TEM-mode coaxial reentrant cavity suitable for
microwave measurement of dielectric parameters [5]. For this
purpose, the standard variational analysis, suitable for symmetric
double discontinuity [6], was carried out for the gap in the central
conductor of a coaxial line. The analysis yields both the upper
and the lower bounds of the short-circuit and open-circuit input
impedance and admittances from which the equivalent circuit can
be determined. Computations were carried out for the discontinu-
ity parameters in [4] and the theoretical values were compared
with the experimental values. Further experimental verifications
were provided by comparing the measured tuning characteristics
of a reentrant cavity with those obtained from the theoretically
calculated gap capacitances.

II. THE DISCONTINUITY PROBLEM AND ITS VARIATIONAL
FORMULATION

The discontinuity configuration is shown in Fig. 1(a) and is
characterized by the parameters: gap ratio G=1/a and radius
ratio R=b/a. The dimensions are usually such that only the
principal TEM mode propagates in the coaxial section. In the gap
section, the cylindrical TM,; mode may or may not propagate
depending on b/A, while all TM,, (m >1) modes are evanes-
cent. If z= 41 are chosen as the terminal reference planes, the
equivalent circuit is a T- or Pi-network (Fig. 1(b) and (¢)). To
determine the equivalent circuit elements it is sufficient to solve
two half problems involving a single discontinuity which result
from bisecting the gap by a magnetic plane (opencircuit) and an
electric plane (shortcircuit) at the plane of symmetry (z = 0).
With TEM wave incident from the left and the transverse fields
in regions I (z < —1) and II (— 1< z < 0) expanded in terms of
the TM,,,, orthogonal mode functions @,, and ¥,, of the coaxial
and cylindrical guides, respectively, it is straightforward to derive
[71, [8] the following stationary expressions for the normalized
input impedance and admittance:
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Fig. 1. (a) The coaxial gap discontinuity. (b) Equivalent T-network. (c)

Equivalent Pi-network.
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where the upper and lower hyperbolic functions correspond to
the open- and short-circuit bisection, respectively; Y, I, —TEM
wave admittance and propagation constant; Y,,,, T, — the wave
admittance and the propagation constant of the coaxial TM,y,,
mode; Y,,,., v, —the wave admittance and the propagation con-
stant of the cylindrical TM,, mode; ky = 27/A.

Expressions (1) and (2) yield the upper and lower bounds,

respectively, on the discontinuity capacitance.

III. NuMEericAL COMPUTATION AND RESULTS

In the upper bound expression, the aperture electric field is
approximated by the incident field as

N
Ey(r)=C®(r)+ Zl Co,(r). ()
ne=
If the mode functions @, (n > 0) and the aperture field E,(7) are
defined to be zero over [0, a], all the integrations in (1a) are
effectively over the aperture area.
For the lower-bound solution, the analysis shows that the (2a)
is exact if H(r) is the magnetic field in the gap region. Therefore,
the following expansion is used:

~

2
H(r)= gl Dy, (r). 4)
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In both the lower- and the upper-bound calculations the in-
finite summations were truncated after 100 terms, and up to 15
term expansions of the unknown fields were used which was
more than that necessary to obtain good convergence.

In Fig. 2 the computed element values of the low frequency
(kob=0.01) equivalent Pi-network of the gap in a 50-8 air line
(26 =0.562 in, 2a = 0.0244 in as in [4]) are plotted showing the
variations of the capacitances with the gap width. On these are
superposed the experimental values in [4] for which no error
spread was indicated, subject to the usual error in reproduction
from a curve and reduced appropriately to take into account the
teflon (€, = 2.1) bead support in the test structure. The calculated
variation of the shunt capacitance shows that it should tend to
zero as the gap becomes vanishingly small. The scattered experi-
mental values, however, indicate hardly any particular depen-
dence on the gap spacing. The calculated low frequency values of
the series capacitance are in good agreement with the experimen-
tal values though they tend to underestimate the latter. As shown
below, this discrepancy is due to the frequency dependence of the
equivalent circuit parameters.

In Fig. 3 the variation of the Pi-network parameters is shown
for 1/a=0.25 and 0.025 in a 50-Q line over a wide range of
normalized frequency k,b up to the cutoff of the cylindrical
TM,, mode. While the shunt capacitance increases very slowly,
almost negligibly, with frequency, the series capacitance increases
much more rapidly and shows a sharp increase near the cutoff.
Also shown are the equivalent series capacitances of the gaps
obtained from Young’s formula. Marcuvitz’s formula for short-
circuit capacitance actually yields identical results. It is im-
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Fig. 3. Frequency dependence of the equivalent Pi-network parameters of
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mediately apparent that these formulas are useful for very small
values of kyb. At a given value of kyb, whether Young’s formula
would be applicable or not can be determined from the percent
deviation of the dc value from the true frequency dependent
value of the capacitance C,p + C,p /2. For example, at kqb = 0.8,
the deviation is 5.6 percent and 8.6 percent for 1/a =025 and
0.025, respectively.

Fig. 4 shows the experimental tuning characteristics of a long
reentrant cavity [S). The resonant frequency for a particular gap
width was also calculated theoretically by treating the cavity as a
coaxial line shorted at one end and terminated at the other by i)
the short-circuit capacitance given by Marcuvitz’s formula and by
ii) the frequency dependent capacitance 2C,, + C,, obtained by
the variational method. The theoretical curve obtained from the
latter is identical in shape to the experimental curve though there
is a quantitative disagreement, which is 2 percent at the worst.
The curve obtained from using Marcuvitz’s formula shows 2.5
percent deviation at the lowest end of the tuning range and the
discrepancy increases rapidly. Since, for the dimensions of the
experimental cavity, kob=1.32 at 7.0 GHz, this disagreement is
not unexpected considering the frequency dependent nature of
the terminating gap capacitance.

IV. CoNCLUSIONS

A systematic theoretical study has been made on the equivalent
circuit of a gap in the central conductor of a TEM coaxial line,
using the standard variational technique. The computed parame-
ter values show good agreement with the experimental data
available in the literature. Further, experimental verification is
provided by computing the resonant frequencies of a reentrant
cavity for various gap widths from the short-circuit gap capaci-
tances and comparing those with the experimentally measured
values. As long as the normalized frequency kyb << 2.405 and the
gap width is small, Young’s or Marcuvitz’s formula can predict
the resonant frequency. But as the resonant frequency increases
with increasing gap width, it is the frequency dependent behavior
of the short-circuit terminating capacitance that plays the key
role in predicting the tuning characteristics correctly.
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Analysis of Triangular Microstrip Resonators

ARVIND K. SHARMA, MEMBER, IEEE AND BHARATHI BHAT,
SENIOR MEMBER, IEEE

Abstract — An isosceles triangular microstrip resonator is analyzed with
the full wave formulation of the spectral domain technique. For a given
apex angle and triangle height, the resonant frequency is evaluated from
the numerical solution of the determinantal characteristic equation, ob-
tained by neglecting the transverse current density. The agreement between
the theoretical and experimental results is typically within 12 percent.

I. INTRODUCTION

The triangular microstrip resonator is a potential network
element for a wide variety of applications such as oscillators,
filters, and circulators [1]. In a recent investigation, Helszajn and
James [2], and Nisbet and Helszajn [3] studied the equilateral
triangular microstrip resonator element for filter and circulator
applications. The 120° symmetry property of this element was
utilized in an articulate design of circulator [2], [4]. Cuhaci and
James [5] showed that, as a resonator, this element exhibits
slightly higher radiation Q-factor ((Q,) than the corresponding
circular microstrip disk resonator. This is a significant advantage
in the design of low-loss microwave integrated circuits,

The isosceles triangular microstrip resonator, as shown in Fig,
1, is considered to be a useful network element, especially for
oscillator and filter applications. It can provide greater flexibility
compared with the equilateral configuration in the design of
microwave integrated circuits.

In this paper, we present an analysis of the isosceles triangular
microstrip resonator with the full wave formulation of the spec-
tral domain technique. The experimental verification of the com-
puted resonant frequencies for various apex angles and triangle
heights is also included.

II. ANALYSIS

The isosceles triangle element in a shielding waveguide con-
figuration is shown in Fig. 1. It has an apex angle 2a and height
1. The dielectric thickness d above the ground plane has relative
dielectric constant ¢,. The shielding waveguide has dimension 24
and d + h. The triangular region is the surface bounded by lines
given by the following equations:

z=1
xxztana=0.

(la)
(1b)

The spectral domain analysis of this structure is essentially
similar to that of a rectangular microstrip resonator [6] or any
other microstrip resonant structure [7]-[9]. Therefore, we shall
present here a description of the assumed current density only.

The current density distribution on an isosceles triangular
microstrip resonator is not explicitly known. However, as a first
approximation, we neglect the transverse current density and
assume the variation of the longitudinal current density J,(x, z)
as following: ‘

Triangular Region, T:{

T (x,2) =T (x)J.(2) @
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